Reduced insulin signaling and endoplasmic reticulum stress act synergistically to deteriorate pancreatic beta cell function.

نویسندگان

  • Tomokazu Matsuda
  • Yoshiaki Kido
  • Tohru Uchida
  • Masato Kasuga
چکیده

The total pancreatic beta cell mass is reduced in individuals with type 2 diabetes. We analyzed the islets of leptin receptor-deficient (Lepr-/-) mice, a model animal for type 2 diabetes with obesity. The plasma insulin levels in Lepr-/- mice peaked at approximately 7 weeks, an age at which the animals manifest normoglycemia to moderate hyperglycemia. Consistent with this, the beta cell mass was enlarged as compared with Lepr+/- mice, and it decreased thereafter. Thus, we focused on the islets of Lepr-/- mice at 7 weeks to elucidate the mechanism underlying beta cell failure. Endoplasmic reticulum (ER) stress was enhanced in beta cells of Lepr-/- mice at 7 weeks, as indicated by the increase in c-Jun and eIF2 alpha phosphorylation. Lepr-/- mice also exhibited a reduction in insulin signaling in beta cells at 7 weeks, as indicated by the decrease in Akt phosphorylation. These results indicate that both augmented ER stress and reduced insulin signaling occur before the onset of frank diabetes. Next, to examine the mutual effect of ER stress and insulin signaling in beta cells in vitro, we used MIN6 insulinoma cells. Tunicamycin induced ER stress as well as inhibited insulin signaling. Conversely, the PI-3 kinase inhibitor, LY294002, enhanced ER stress. Furthermore, the reduction in insulin signaling by LY294002 facilitated the induction of ER stress with tunicamycin. Taken together, we concluded that both ER stress and reduced insulin signaling might synergistically affect pancreatic beta cell dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity

During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to not only insulin resistance but also to pancreatic beta cell failure. Conversely, cell function under various stressed conditions can be restored by reducing ER stress by activating AMP-activated protein kinase (AMPK). However, the details of this mechanism are still obscure. Therefore, the current study aims ...

متن کامل

Endoplasmic Reticulum Stress-Associated Lipid Droplet Formation and Type II Diabetes

Diabetes mellitus (DM), a metabolic disorder characterized by hyperglycemia, is caused by insufficient insulin production due to excessive loss of pancreatic β cells (type I diabetes) or impaired insulin signaling due to peripheral insulin resistance (type II diabetes). Pancreatic β cell is the only insulin-secreting cell type that has highly developed endoplasmic reticulum (ER) to cope with hi...

متن کامل

Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1.

In pancreatic beta cells, the endoplasmic reticulum (ER) is an important site for insulin biosynthesis and the folding of newly synthesized proinsulin. Here, we show that IRE1alpha, an ER-resident protein kinase, has a crucial function in insulin biosynthesis. IRE1alpha phosphorylation is coupled to insulin biosynthesis in response to transient exposure to high glucose; inactivation of IRE1alph...

متن کامل

Oxytocin Protects against Stress-Induced Cell Death in Murine Pancreatic β-Cells

Oxytocin (Oxt) is a key neuropeptide that regulates maternal behaviors as well as social behaviors in mammals. Interestingly, recent studies have shown that the impairment of Oxt signaling is associated with the disturbance of metabolic homeostasis, resulting in obesity and diabetes. However, the molecular mechanism by which Oxt signaling controls metabolic responses is largely unknown. Here, w...

متن کامل

Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling

Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Kobe journal of medical sciences

دوره 54 2  شماره 

صفحات  -

تاریخ انتشار 2008